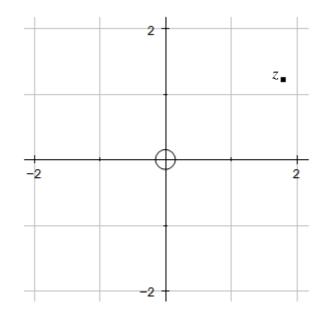
Calculus Polar Complex Number Practice #1

- 1. Write k + 5ki in polar form.
- 2. $w = n \operatorname{cis}\left(\frac{\pi}{8}\right)$ and $v = 2n \operatorname{cis}\left(\frac{5\pi}{8}\right)$. Calculate the exact value of wv.
- 3. $w = n \operatorname{cis}\left(\frac{\pi}{8}\right)$ and $v = 2n \operatorname{cis}\left(\frac{5\pi}{8}\right)$. Calculate the exact value of $\frac{w}{v}$.
- 4. What are *k* and *x* if $z = k \operatorname{cis} (3.5) = x 5i$?
- 5. Find z such that $z^3 = 3 3i$.
- 6. $z = k \operatorname{cis} \left(\frac{n\pi}{8}\right)$. For what integer values of *n* is z^5 a real number?
- 7. Write $\sqrt{48} + 4i$ in exact polar form.
- 8. Plot the square roots of *z* on the diagram:



Answers: Calculus Rectangular Complex Number Practice #1

- 1. Write k + 5ki in polar form. $|z| = \sqrt{(k)^2 + (5k)^2}$ arg $z = \tan^{-1}(\frac{5k}{k}) = \tan^{-1}(5)$ $z = \sqrt{26} k \operatorname{cis} (1.3734)$ $z = \sqrt{26} k \operatorname{cis} (1.3734 + \pi) = \sqrt{26} k \operatorname{cis} (4.515)$ or, for when k < 0 $w = n \operatorname{cis}\left(\frac{\pi}{8}\right)$ and $v = 2n \operatorname{cis}\left(\frac{5\pi}{8}\right)$. Calculate the exact value of wv. 2. $= 2n^2 \operatorname{cis} \left(\frac{3\pi}{4}\right) \quad (= \sqrt{2} n^2 + \sqrt{2} n^2 i)$ $w.v = (n \times 2n) \operatorname{cis} (\frac{5\pi}{8} + \frac{\pi}{8})$ 3. $w = n \operatorname{cis}\left(\frac{\pi}{8}\right)$ and $v = 2n \operatorname{cis}\left(\frac{5\pi}{8}\right)$. Calculate the exact value of $\frac{w}{v}$. $\frac{w}{n} = (\frac{n}{2n}) \operatorname{cis} (\frac{5\pi}{8} - \frac{\pi}{8})$ = 0.5 cis $(\frac{\pi}{2})$ (= 0.5 *i*) What are k and x if $z = k \operatorname{cis} (3.5) = x - 5i$? 4. so $k = -5 \div \sin(3.5) \implies k = 14.25$ $k \cos (3.5) + k \sin (3.5) i = x - 5i$ and $x = k \cos(3.5) = 14.25 \cos(3.5)$ $\Rightarrow x = -13.35$ Find z such that $z^3 = 3 - 3i$. 5. $z^3 = 3 - 3i = \sqrt{18} \operatorname{cis} \left(\frac{7\pi}{4}\right)$ or $z^3 = 3 - 3i = \sqrt{18} \operatorname{cis} \left(\frac{-\pi}{4}\right)$ $z = \sqrt[3]{\sqrt{18}}$ cis $(\frac{7\pi}{4} \div 3)$ by De Moivre's Theorem, with solutions at $\frac{2\pi}{3}n$ $z_1 = \sqrt[6]{18} \operatorname{cis}(\frac{7\pi}{12})$ $z_2 = \sqrt[6]{18} \operatorname{cis}(\frac{15\pi}{12})$ $z_3 = \sqrt[6]{18} \operatorname{cis}(\frac{23\pi}{12})$ $z_4 = \sqrt[6]{18} \operatorname{cis}(\frac{-\pi}{12})$ 6. $z = k \operatorname{cis} \left(\frac{n\pi}{8}\right)$. For what integer values of *n* is z^5 a real number? $z^5 = k^5$ cis $(\frac{5n\pi}{8})$ by de Moivre, so z^5 is real when $\frac{5n\pi}{8} = x\pi$ where x is an integer So $n = \frac{8}{5}x$ where $x \in \mathbb{Z}$ but only want integer n, so need to get rid of fraction n = 5x where $x \in \mathbb{Z}$ or in words, n is any integer multiple of 5 (includes negatives) 2 Write $-\sqrt{48} + 4i$ in exact polar form. 7. $-\sqrt{48} + 4i = 4(-\sqrt{3} + 1i)$ which is from
 - $\frac{\pi}{6} / \frac{\pi}{3} / \frac{\pi}{2}$ triangle = 8 cis ($\frac{5\pi}{6}$)
 - Plot the square roots of z on the diagram:

8.

2

-2

Arg(z) halved, modulus about $\sqrt{2}$

Second solution at $\frac{2\pi}{2} = \pi$ away

2014