L1 Algebra Trial #4

- Q1. a) Simplify fully: $\frac{2x^2}{4x^3}$
 - b) Expand and simplify: (x 5)(x 6)
 - c) Simplify fully: $\frac{5x(x-2)}{10x^2 + 20x}$
 - d) Simplify: $\sqrt{81x^8}$
 - e) Make k the subject of the equation: $x = \frac{7}{\sqrt{k+5}}$
 - f) The pattern 5, 10, 17, 26, ... is given by the rule $t_n = (n + 1)^2 + 1$. Show that the difference between one term and the next is given by: difference = 2n + 3
- Q2. a) Factorise fully: $x^2 2x 15$

b) Solve:
$$(x - 4)(x + 5) = 0$$

c) Simplify fully:
$$\frac{x^2 - 36}{x + 6}$$

d) Solve:
$$\frac{x+11}{x+5} = x + 1$$

- e) $x^2 50x + 625 = 0$ has only one solution, at x = 25. Explain what that means in terms of graphing the relationship of $y = x^2 50x + 625$.
- f) If $ab^2 = 90$ and ab = 15, what is a?

Q3. a) Solve: 10x - 5 = 2x - 21

- b) Expand and simplify: 5(x + 3) x(x 2)
- c) Solve: 2x 3 < 6x + 5
- d) Solve: $\frac{x+4}{3} > x + 2$
- e) Define k so that both these following statements are true:
 k plus 3 is greater than 8 and 9 minus k is greater than zero.
- f) Find a number such that a third of it added to a fifth of it equals 8.

L1 Algebra Trial #4 : Answers

In general terms: a) & b) are Achieved, c) & d) are Merit, e) & f) are Excellence

Q1. a) Simplify fully:
$$\frac{2x^2}{4x^3}$$
 $-\frac{2x+1x+x+x}{2x+x+x+x}$ $-\frac{1}{2x}$
b) Expand and simplify: $(x-5)(x-6) = x^2 - 5x + 30 = x^2 - 11x + 30$
c) Simplify fully: $\frac{5x(x-2)}{10x^2+20x}$ $-\frac{5x(x-2)}{6x(x+4)}$ $-\frac{x-2}{2x+4}$ or $\frac{x-2}{2(x+2)}$
d) Simplify: $\sqrt{81x^3}$ $= \sqrt{81} \times \sqrt{x^3}$ $= \pm 9x^4$ (need \pm for M)
e) Make k the subject of the equation: $x = \frac{7}{\sqrt{k+5}}$ $k = \frac{49-5x^2}{49} = \frac{49}{x^2} - 5$
f) The pattern 5, 10, 17, 26, ... is given by the rule $t_n = (n + 1)^2 + 1$. Show that the
difference between one term and the next is given by: difference $= 2n + 3$
diff $= t_{n,1} - t_n = [(n + 1 + 1)^2 + 1] - [(n + 1)^2 + 1]$
 $= (n^2 + 4n + 4 + 1) - (n^2 - 2n + 1 + 1)$ diff $= 2n + 3$
Q2. a) Factorise fully: $x^2 - 2x - 15$ $-(x-5)(x + 3)$
b) Solve: $(x - 4)(x + 5) = 0$ $x = 4$ or -5
c) Simplify fully: $\frac{x^2 - 36}{x + 6} = \frac{(x - 6)(x + 4)}{(x + 4)} = x - 6$
d) Solve: $\frac{x + 11}{x + 5} = x + 1$ $x + 11 = (x + 5)(x + 1)$
 $x + 11 = x^2 + 6x + 5$ $0 = x^2 + 5x - 6 = (x + 6)(x - 1)$ $x = 1$ or -6
e) $x^2 - 50x + 625 - 0$ has only one solution, at $x - 25$. Explain what that means in
terms of graphing the relationship of $y = x^2 - 50x + 625$.
The graph is a parabola, which only touches the x-axis at (25, 0) or similar
f) If $ab^2 = 90$ and $ab = 15$, what is a?
 $b = \frac{ab^2}{ab} = \frac{60}{15} = 6$. As $ab = 15$, $a \times 6 = 15$, so $a = \frac{15}{6}$ $a = 2.5$
C3. a) Solve: $2x - 3 < 6x + 5$ $-3 < 6x - 2x + 5$
 $-3 - 5 < 4x$ $-8 < 4x$ $x > -2$
d) Solve: $\frac{x + 4}{3} > x + 2$ $x + 4 > 3(x + 2)$
 $x + 4 > 3x + 6$ $-2 > 2x$ $x < -1$
e) Find what k can be so that both these following equations are true:
 $k plus 3 is greater than 8 and 9 minus k is greater than 2ero.
 $k^2 + \frac{5}{3} = 8$ $\frac{5x}{15} + \frac{3x}{15} = 8$ $8x - 15 \times 8$ $x = 15$
fold a number such that a third of it added to a fifth of it equals 8.
 $\frac{x}{3} + \frac{x}{5} = 8$ $\frac{5x}{15} + \frac{3x}{15} = 8$ $8x - 15 \times 8$
the number is 15 (must solve using equations)$

the number is **15** (must solve using equations)