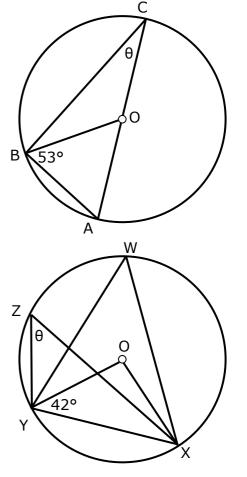

Merit + Circle Geometry Practice #2

1. Find \measuredangle ACB (marked θ).

2. Find $\measuredangle XZY$ (marked θ).

3. Find \measuredangle RPS if \measuredangle RTQ is 38°.

JL is a tangent intersecting at K
NL is a tangent intersecting at M
Find the size of ∠KLO in terms of ∠KPM


Answers: Merit+ Circle Geometry Practice #2

1. Find \measuredangle ACB (marked θ).

 $\measuredangle ABC = 90^{\circ}$ (subtended from ends of a diameter) $\measuredangle OBC = 37^{\circ}$ (adds to 90° with $\measuredangle ABC$) $\measuredangle ACB = 37^{\circ}$ (equal to $\measuredangle OBC$ because an isosceles triangle formed from radii)

2. Find $\measuredangle XZY$ (marked θ).

∡OXY = 42°	(triangle formed from radii is isosceles)
∡XOY = 96°	(interior angles of a triangle add to 180°)
∡XZY = 48°	(angle subtended to centre is twice
	the angle to the sides)

ual)

0

R

М

3. Find \measuredangle RPS if \measuredangle RTQ is 38°.

∡RPQ = 38°	(angles subtended to the side by the same arc are	e eq
∡QPS = 90°	(subtended from ends of a diameter)	
	(\measuredangle RPS and \measuredangle RPQ add to \measuredangle QPS = 90°)	
∡QOR = 76°	(angle at centre from an arc is $2 \times$ angle at side)	\sum
	(adjacent angles on a line add to 180°)	×/
∡RPS = 52°	(angle at centre from an arc is 2× angle at side)	

JL is a tangent intersecting at K
NL is a tangent intersecting at M
Find the size of ∠KLO in terms of ∠KPM

Let $\measuredangle KPM = x$